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Overview

Timeline Barriers and Technical Targets
«  Project start date: 01 Feb 2021  Barriers addressed
« Project end date: 31 Jan 2023 - '%ata_?#a"ttyi_we applitﬁd %ret-fi!cteritrrllg
. i algorithm to improve the data for the
Percent complete: 16.7% modeling using neural networks

— Large model parameters: We
developed hybrid neural network to
reduce model parameters

BUdget — Real-time implementation
« Total project funding: $2M
— DOE share: $2M Partners
— Contractor share: 0 « Interactions/collaborations:
* Funding for FY 2021: $700k University of Hawaii, Econolite
- Funding for FY 2022: $900k Systems, Hawail DOT

- Funding for FY 2023: $400k *  Projectlead: ORNL
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1. Relevance

Impact:

» Since traffic systems are dynamic, nonlinear and stochastic, this project will develop Al-based modeling and
controls for the first-time on 24/7 real-world implementation.

» Address the effects of future mobility technologies and services on VTQO's research portfolio — and thus
significantly expend the DOE landscape for real-world implementation of Al for Mobility.

» Use data sources and facilities built via the recent investment from the Hawaii DOT to its busiest arterial for
improved traffic system monitoring and operation.

ObJ ectiveZ / Real-time data from Econolite Information Platform
« Develop and apply Al based Al Based Modeling 1
a k 1 .
modeling and control for (e [ AlLeaming_|
Optlmlzed MOblIlty for the 7/ REeaI-tIn;;D;tatfrom<—
a o a conolite System
Nimitz Highway and Ala Moana
Boulevard Arterial in Honolulu Objective Task3 R
@ Smooth traffic flow >
» Al Based Coordination Signal Control
. Opera‘[e the Al based modeling @ Energy minimization an(qr:;(ngol Input Actual energy consumption
and control 24/7 as a real-time Task3
|mp|ementat|0n to see the \—/ Arterial with 35 intersecti
benefit of advanced Signal Task 3: Real-time implementation and test
controls
Figure 1. The closed loop system structure and tasks
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Tasks and Milestones (Project duration on 02/01/2021 - 01/31/2023)

ALt Complete Al-based modeling for the Nimitz Highway and Ala Moana Month 5 In progress
ylersi=ifiglel | Boulevard arterial in Honolulu with a <10% modeling error and a 95%
confidence interval. .

A\Becsh i Al-based control strategy completed with a <5% closed-loop control error, Month 12 Not started
eolpiifel B 15% energy savings, and 25% reduced travel delays for simulated scenarios.

Go/no-go: Successful completion of Al-based modeling and control
design

sz IEVelglel Complete the implementation of the Al-based control for the Nimitz Highway Month 24 Not started
==idpel - and Ala Moana Boulevard arterial in Honolulu with at least 15% energy

savings and 25% of travel delay reduction compared with the baseline case of

Econolite controls. Submit a paper to a leading transportation journal.
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2. Approach ( Feb 2021 — now)

%

o Data from Econolite Platform

High resolution data available from the platform
as shown in Fig 2.

e Neural Network Modeling

Use neural networks to model the dynamics of
the intersections for travel delays and signal
timing. The following modeling exercises have
been conducted since Feb 2021:
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Linear (intersection # 4)

Neural Network (intersection # 4)

Hybrid Neural Network 1 (intersection # 4)
Hybrid Neural Network 2 (7 intersections)
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Figure 2. Econolite data and intersectional controls



3. Technical Accomplishments and Progress (since February 2021)
3.1 Obtain High-Resolution Delay Data from Econolite System

S

Event Event
fimestamp code Param
2/1/2021 11:27:30 44 1
2/1/202111:27:31 7 1
2/1/202111:27:31 8 1
2/1/202111:27:31 63 13
2/1/202111:27:33 81 36
2/1/2021 11:27:33 44 5
2/1/202111:27:33 82 37
2/1/2021 11:27:33 7 5
2/1/202111:27:33 ) 5
2/1/2021 11:27:33 63 15
2/1/2021 11:27:33 81 37
2/1/202111:27:35 10 1
2/1/2021 11:27:35 64 13
2/1/202111:27:35 65 13
2/1/2021 11:27:36 0 2
2/1/2021 11:27:36 11 1
2/1/202111:27:36 1 2
2/1/202111:27:36 2 6
2{1/202111:27:36 12 1
2/1/202111:27:36 21 2
2/1/202111:27:37 10 5
2/1/202111:27:37 9 5
2/1/202111:27:37 64 15
2/1/202111:27:37 65 15
2/1/202111:27:38 0 6
2/1/202111:27:38 11 5
2/1/202111:27:38 1 6
2{1/202111:27:38 12 5
A fa fannt 1197090 a1 c

Detector on, Detector id 37
Green off, phase 5

Detector off, Detector id 37
Red clearanceon, phase 1

Departure Pattern

Red clearance off, phase 1 @ 7 Estimated From
Green on, phase 2 T 6 Pulse Detectors
§ 5
- 4-
5 .
£ 3 Area underneathistotal delay.

Arrival Pattern
Estimated From 1

total delay

average delay = # of vehicle

1
T t

0 10 20 30 40 50 60
Time (sec)

+ All events from advanced, stopbar and pulse detectors are extracted as well as
signal timing of all phases.

* Queue length of each phase is estimated to calculate delay.




3.2 Linear System Modeling: Is the System Nonlinear?

Objective: To explore whether the system is Denote

linear or nonlinear o=[7], ot = y (k)
bl u(k)

The intersection 4” is considered with the input

as the green time and output as average per

vehicle delays, denoted respectively as u(k) and

Then the following recursive least squares (RLS)
algorithm is used to estimate {a, b} using the data

y (k). collected from Econolite/UH platform

_ : B P(k)p(k)e(k)
k = sample index once every 5 cycles. 0(k+1) = 6(k)+ 7 ST (OP (k) (K)
The model is assumed to be the 15t order of the T (k) = [y(k) u(k)]

following structure
e(l) =y(k +1) — 6" (k) (k)

y(k +1) = ay(k) + bu(k) + w(k) P~l(k+1) = P71(k) + o(k)p(k)"

where {a, b} are unknown parameters to be

. : : where
estimated, w(k) is a noise. » 0(k) is the estimate of § at sample time k (of every
5 cycles),

» P(k) is the variance matrix,
» ¢&(k) is the estimation residual.



3.2 Linear Model Results — First Order Dynamics

The following figures shows the modeling results, 8(0) = 0, P(0) = 100/,
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3.3 Hybrid Neural Network (HNN) Model —

{EQOAK

Study area: Intersection 1-7

Date: March 3-5, 8-12, 15-19, 22-26, 29-31,
April 1-2 (23 weekdays)

Time: 4pm — 7 pm

Signal phase: all phases of major and minor
streets

Traffic volume: all movements
Delay: all movements

Sample Index: 5 signal cycles (Each cycle
~170s)
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Figure 3. The First 7 intersections along
Nimitz Highway
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3.3 Hybrid NN Model — Data Visualization

Missing data

Delay at Intersection # 7 (2021-03-0.

6 phases:
¢1 ¢2 ¢4 4’8 175

19 9915 37 100
5 ¢6 s

—— Phasel; Avg=137s

Phase2; Avg=>52s
—— Phased; Avg=133s
= Phase5; Avg=132s
= Phase6; Avg=67s
—— PhaseB; Avg=132s

40 78
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peba 40
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Green light at Intersection # 7 (2021-03-04)
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PhaseZ; Avg=127s
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Volume at Intersection # 7 (2021-03-04)

Int. #07
NNIMILZ 100
HIGHWAY AT
ALAKAWA
STREET 50

—— Phasel; Avg=11veh
Phase2; Avg=122veh
= Phased; Avg=8veh
—— Phase5; Avg=51veh
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—— PhaseB; Avg=53veh

e e e =
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3.3 Hybrid Neural Network (HNN) Modeling — Model Structure

* HNN Model Linear Nonlinear Term

Traffic volume
y(k +1) 5 Ay(k) + Bu(k)|+|f (y(k), u(k — 1), v(kﬁ €)) HNN

where y(k) and u(k) denote average delay per vehicle and green time for multiple intersections at time index
k. w(k) is noise. {A, B} are the weight matrix. Let f(y(k),u(k — 1),v(k)) be approximated and learned by

fy(k),u(k — 1),v(k), ) using the real-time data, and v(k) denote traffic volume.

This is Achieved by minimizing Eq.(3) using gradient approach.
Min J =2 @k + 1) — y(k + 1))? ) Objective

9k +1) = Ay(k) + Bu(k) + f(y(k),u(k — 1),v(k),m) (3)

{A, B, m} are parameters to be trained. m groups all NN weights and bias.
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3.3 Hybrid NN - Model Training Algorithm

* Model parameters {A, B, m} are trained simultaneously by (6)-(11):
J
Ak +1) = A(k) - /11 |(A(k)B(k) #(k)) (6) -

B(k+1)=B(k) - /12 |(A(k) 800,200y (7) _ Parameter
update rules

9
itk +1) = fi(k) — A3~ g — | A8, 200 (8)

where 14, 4,, A3 are learning rates.
|(A(k)B(k) 2ty = Gl + 1) =yl + 1)) 2 52 | ooty = @k + 1) =yl + 1)) y(k) (9)
|(A(k)B(k) 2ty = @k +1) —y(k + 1)) |(A(k)B(k) 2ty = @k +1) —y(k + 1)) u(k) (10)
|(A(k)B(k) 2ty = @k +1) —y(k + 1)) |(A(k)B(k) 2(K)) (11)

where y(k+1) is the measured data.
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3.3 Hybrid NN — Experiment Results

08 Training Error

0.6
=]
Qo 04
o
'_E 02
é_‘f 00 T---
' -02
[
Z -0s
=
-0.6
-0.8 T T T T T T
] 1000 2000 3000 4000 5000
Training Samples of 7 intersections
TABLE 1: Training and Testing Results
Training Testing Testing Testing
(all) (all) (Main streets) (Side streets)
Mean Absolute Percentage 6.31% 6.51% 5.67% 6.98%
Error (MAPE)
Rooted Mean Square Error 9.62 s 10.18 s 414 s 12.33 s
(RMSE)
Mean Absolute Error (MAE) 6.72 s 6.99s [ 3.03s I‘_'[ 9.21 sl
TABLE 2: Testing results at each intersection
Intersection 1 2 3 4 5 6
Mean Absolute 403% 5.09% 57% 7.74% 7.75% 6.74%
Percentage Error (MAPE)
Rooted Mean Square 3.79s 5.74s 10.76s 11.03s 12.61s 8.86s
Error (RMSE)
Mean Absolute Error 229s 436s 6.65s 8.72s 9.18s 6.23s
(MAE)
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Er;ror probability density function - Training
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Yn(k) — ?n(k)‘

Ll
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RMSE = 3" " (k) = 3a (1))
k=1n=
1 h 1 1
MAE = <23 ) lyn(k) = 9a ()
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vn (k) : True delay at time k of phase n.
v, (k) : Predicted delay at time k of phase n.



3.3 Hybrid Neural Network Modeling — Experiment Results

» Testing: Intersection 1 (March 22 - 26), Total cycle length = 180 (sec)

Comparisons — Testing data — Intersection #1 Phase # 1 Comparisons — Testing data — Intersection #1 Phase # 2
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Intersection 1
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3.3 Hybrid Neural Network Modeling — Experiment Results

Testing: Intersection 4 (March 22 - 26)

Comparisons — Testing data — Intersection #4 Phase #1

Comparisons — Testing data — Intersection #4 Phase #2
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Comparisons — Testing data — Intersection #4 Phase #3
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3.3 Hybrid NN — Experiment Results
» Testing: Average travel delays at all 7 intersections

Comparisons — Testing data — Intersection #1

Comparisons — Testing data — Intersection #2

100 — Tuevalue 1001 —— Tue value
Predicted value Predicted value
90 -
90
. WW _—
T 80 T
(=] [s]
70
70
&0 4
60
Mar 22 Vit 23 ar 24 iar 25 Vo 26 Mar 22 Mar 23 Mar 24 Mar 25 Mar 26
Testing Samples Testing Samples
Comparisons — Testing data — Intersection #4 Comparisons — Testing data — Intersection #5
10 4 —— Tue value 100 —— Tue value
Predicted value Predicted value
100 4 %0
= 9201 W = WW
B B
& &
A0 4
704
60
Mar 22 Mar 23 Mar 24 Mar 25 Mar 26 Mar 22 Mar 23 Mar 24 Mar 25 Mar 26
Testing Samples Testing Samples
Comparisons — Testing data — Intersection #7
110 = True value
Predicted value
100
T ANV ONEN AL AN
o
a
80
0
60
%8&51%&1%12 Mar 22 Mar 23 Mar 24 Mar 25 Mar 26
Y Testing Samples

Comparisons — Testing data — Intersection #3

110 =
— Tue value
100 4 Predicted value
z 50 T~ —
]
=0
70 1
60 1 T T T T T
Mar 22 Mar 23 Mar 24 Mar 25 Mar 26
Testing Samples
Comparisons — Testing data — Intersection #6
—— Tue value
100 Predicted value
R -
]
[=]
T0
&0

Mar 24 Mar 25 Mar 26

Testing Samples

Mar 22 Mar 23



4. Collaborations and Coordination with Other Institutions

The project team is composed of ORNL, University of Hawaii, Econolite Systems and Hawaii DOT, where
ORNL team lead the project and will work on Al-modeling, control design and leads 24/7 real-time
iImplementation.

The collaborative activities are as follows:

» University of Hawaii (Professor Guohui Zhang and Dr Arun Bala Subramaniyan):
- Data processing
- Neural network modeling and VISSIM simulation ORNL Team Members:

« Econolite Systems (Dr Jon Ringler): Dr Chieh (Ross) Wang
— Data collection and processing Dr Wan Li

~ Real-time modeling and control interface Dr Yunli Shao
Dr Tim Laclair

Dr David Smith

« Hawaii DOT (Edwin H Sniffen): Dr Jacky Rios-Torres
- Facilitates 24/7 implementation
— Provides 10+ vehicles with onboard units to real-time testing

— Probability density function shaping for modeling error
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5. Remaining Challenges and Barriers

Most studies on Al for intersectional signal control only consider a few intersections, and no
real-time learning system has been deployed for large-scale field testing because of the lack
of comprehensive real-time data and user-friendly interfaces to the implementation. These
shortcomings have limited the current research on Al for mobility at the simulation level.

Moreover, energy efficiency has not been well addressed for these Al-based modeling and
controls. This constitutes the following challenges and technical barriers:

= Although the theory of Al-based modeling and control for signal control is maturing, the
field testing and closed-loop control implementation for large number of intersections is still
limited because of the insufficient real-time data for fast feedback control realization;

= The existing Al-based modeling for transportation systems cannot yet capture the nonlinear
and dynamic stochastic nature with high reliability and robustness; and

= Guaranteed control performance for the energy minimization is still lacking.

The project therefore focuses on the development and implementation of real-time learning
and adaptation for the signal control along the arterial, where both NN modeling and control
will be adaptively learned during the real-time system operations.
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6. Planned Future Research

« Data Processing e ied 2
~ Collect more data to train HNN e A
. . . Upper Manoa  Maunalani
- Include signal phases for both major and minor streets g 10 antalus
- Include more features, e.g., traffic volume. 1 ‘i’:rl’:I(.:)‘:‘;}f:.‘.’.‘ ) 0
Hauiki Homes *  canms M@ 0 Kalakaua e
- o & k— ‘W
 Neural Network Modeling [ oo e20@iy . g0
. . . =~/ 0488 880 > [T )
— Complete HNN modeling for all the 34 intersections : Kapalama 31 IilEiGS) .
— Use Different NN structures, e.g., RNN, LSTM. a Island swatfindsi

Use different sample intervals, e.g., every 2-4 cycles
Explore probability density function shaping for modeling
Validate data processing output with ground truth videos

Al Controller Design (July 2021 — Feb 2022)

Real-time implementation (March 2022 — Jan 2023)

Any proposed future work is subject to change based on funding levels.
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/. Summary

o Accomplishments

- Complete Al-based modeling for the 7 intersections along Nimitz Highway and Ala Moana
Boulevard arterial with a <10% modeling error as expected.

e Technical Highlights
- Modeled the relationships between travel delay and signal timings using linear system modeling
- Developed a hybrid neural network modeling algorithm together with relevant training strategy
- Modeled the relationships between travel delay, signal timings, traffic volumes with hybrid neural network.

/ Real-time data from Econolite Information Platform
Al Based Modeling
(Task1) < Al Learning
/ .| Real-time Data from |

Econolite System

Thank you for

Objective

Task 3 Actual traffic flow status H
@ Smooth traffic flow > yo U r q e n Io n
gic g°°:d':""°“‘ Signal Control .
2 Energy minimization ‘"m &"2;" Input Actual energy consumption

Arterial with 35 intersections

Task 3: Real-time implementation and test
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